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ABSTRACT: The field of game AI has long served as a benchmark for evaluating the capabilities of machine learning 
algorithms. With the advent of Deep Reinforcement Learning (DRL), machines can now learn optimal strategies 
through trial-and-error interactions without relying on hand-coded rules. This paper explores the application of DRL, 
particularly Deep Q-Networks (DQN) and Policy Gradient methods, in learning strategies for complex board games 
such as Chess, Shogi, and Connect Four. We implement neural agents using TensorFlow and train them against random 
and rule-based opponents. The models receive only game state as input and learn to maximize win rates over hundreds 
of thousands of simulated episodes. Experimental results show a 15% improvement in win rates over traditional 
minimax-based agents after sufficient training. We also explore the stability challenges of DRL, including the need for 
experience replay and target network updates. Our findings demonstrate that DRL is capable of outperforming 
traditional rule-based AI in structured environments, though sample inefficiency and training time remain limitations. 
The study contributes to the growing body of research that applies deep learning to sequential decision-making tasks 
and has implications beyond games, including robotics, autonomous vehicles, and resource scheduling. 
 

I. INTRODUCTION 

 

Games have long been a proving ground for artificial intelligence, offering structured environments, clear reward 
signals, and well-defined state spaces. From early chess engines to modern real-time strategy simulations, 
advancements in game AI have paralleled progress in AI more broadly. In recent years, the combination of deep 
learning and reinforcement learning—commonly referred to as Deep Reinforcement Learning (DRL)—has 
demonstrated remarkable success in solving complex control problems and mastering games once thought to be 
infeasible for machines. 
 

The success of DRL in mastering Atari games (Mnih et al., 2015), Go (Silver et al., 2016), and 3D environments like 
Dota 2 and StarCraft II has reinvigorated research into learning-based game AI. Unlike traditional approaches that rely 
on handcrafted evaluation functions and expert-designed heuristics, DRL enables agents to learn optimal strategies 
through direct interaction with the environment, guided only by reward signals. 
 

This paper investigates the application of DRL methods—specifically Deep Q-Networks (DQN) and Policy Gradient 
algorithms—to strategy optimization in classical board games including Chess, Shogi, and Connect Four. These games 
were selected due to their structured rules, large but discrete state spaces, and established AI benchmarks. By training 
neural agents against both random and traditional rule-based opponents, we aim to assess the feasibility and 
performance of DRL for game strategy learning in discrete turn-based environments. 
 

Furthermore, we explore the practical challenges of applying DRL to such games, including sample inefficiency, 
stability during training, and the necessity of auxiliary techniques like experience replay and target network updates. 
Our goal is to identify both the strengths and limitations of DRL in this domain and contribute experimental evidence to 
the growing field of deep sequential decision-making. 
 

II. HYPOTHESIS 

 

The central hypothesis of this research is that deep reinforcement learning agents, when trained using DQN and Policy 
Gradient methods on classical board games, can learn effective strategies that outperform traditional rule-based AI 
agents such as those based on minimax search. 
 

We posit that: 
1. DRL agents will achieve higher win rates against random and rule-based opponents after sufficient training 

episodes. 

http://www.ijarasem.com/


International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM) 

                                        | ISSN: 2395-7852 | www.ijarasem.com | Bimonthly, Peer Reviewed & Referred Journal|        

 | Volume 4, Issue 4, July 2017 | 
 

IJARASEM © 2017                                                          |   An ISO 9001:2008 Certified Journal   |                                            1001 

 

2. DQN will perform well in discrete action spaces, but may suffer from instability without enhancements such 
as target networks and experience replay. 

3. Policy Gradient methods will provide smoother learning, especially in environments where action-value 
estimation is difficult or suboptimal. 

4. The performance of DRL agents will correlate strongly with the number of training episodes, 
emphasizing the importance of computational resources and training time in such approaches. 

 

By validating these hypotheses through controlled experiments, we aim to highlight DRL’s potential and limitations in 
structured, turn-based games and provide guidance for future research on sample efficiency, policy generalization, and 
transfer learning in game environments. 
 

III. EXPERIMENTAL SETUP 

 

The experimental setup was designed to evaluate DRL algorithms in controlled and reproducible environments. All 
experiments were conducted on a dedicated cluster with 8 NVIDIA GTX 1080 GPUs, 512 GB RAM, and Ubuntu 
16.04. The software stack included TensorFlow v1.3, Python 3.5, NumPy, and custom OpenAI Gym-style interfaces for 
each game. 
 

Three games were selected: 
• Chess: A strategic game with a large action space and deep tactical play. 
• Shogi: A Japanese chess variant with a more complex branching factor due to piece drops. 
• Connect Four: A simpler, tractable grid-based game used for rapid prototyping and evaluation. 

 

For each game, we implemented a game engine that allowed programmatic interaction and environment control. Each 
engine adhered to a standard API: 
 

• reset(): Initializes the game board. 
• step(action): Applies an action and returns the next state, reward, and terminal flag. 
• render(): Optional visual output for debugging. 

 

The neural agents were built using two architectures: 
1. DQN: A feed-forward network with three hidden layers (512, 256, 128 units), using ReLU activations, trained 

with experience replay and a target network updated every 1,000 steps. 
2. Policy Gradient: A similar architecture trained using the REINFORCE algorithm, with softmax outputs over 

action space and rewards normalized per episode. 
 

Training parameters included: 
• Learning rate: 0.0005 

• Batch size: 64 

• Discount factor (γ): 0.99 

• Replay buffer size: 100,000 

• Epsilon-greedy exploration: starting at 1.0 and decayed to 0.1 

 

Each agent was trained over 500,000 episodes against random or scripted opponents. Evaluation was performed every 
10,000 episodes using fixed opponents and averaged over 500 games to determine win rates and move quality. 
Logging and monitoring were implemented using TensorBoard, and agent checkpoints were saved for resuming and 
fine-tuning. 
 

IV. PROCEDURE 

 

The experimental procedure was structured to train, evaluate, and compare DRL agents across three different board 
games. Each stage was carefully designed to ensure reproducibility, fair comparison, and meaningful evaluation of 
learning behavior. 
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4.1 Agent Initialization 

Each DRL agent was initialized with a neural network whose weights were randomly sampled from a Gaussian 
distribution. For the DQN agent, the Q-network and target network were initialized separately, and the experience 
replay buffer was empty at the start of training. For Policy Gradient agents, action probabilities were computed through 
a softmax output layer, and baseline reward normalization was applied per episode. 
 

4.2 Training Loop 

The training loop for each agent followed this general structure: 
1. The game environment was reset at the beginning of each episode. 
2. The agent observed the initial state and selected an action based on its current policy. 

o DQN: ε-greedy selection from the Q-network. 
o Policy Gradient: sampling from the softmax distribution. 

3. The environment responded with the next state, reward, and a terminal signal. 
4. The experience tuple (state, action, reward, next state, done) was stored in the agent’s memory. 
5. Once a sufficient number of experiences were gathered, the agent performed a training step: 

o DQN: Minibatches were sampled from the replay buffer, and the Bellman error was minimized using 
the Adam optimizer. 

o Policy Gradient: After each episode, the policy was updated using the episode’s trajectory and 
corresponding rewards. 

6. Every 1,000 steps, the target network in DQN was updated with the parameters of the current Q-network to 
stabilize learning. 

Each training session continued for 500,000 episodes per game, with periodic evaluations performed every 10,000 
episodes using a frozen policy. 
 

4.3 Opponent Types 

Two types of opponents were used: 
• Random Agent: Selected actions uniformly from the set of legal moves. 
• Rule-Based Agent: Used domain-specific heuristics and depth-limited minimax search (e.g., depth 2 for 

Chess and Shogi, full-depth solver for Connect Four). 
This allowed evaluation of DRL agents against both naive and strategically competent opponents. 
 

  4.4 Evaluation 

For every evaluation interval, the current DRL policy was used to play 500 games against each opponent type. Metrics 
recorded included: 

• Win/loss/draw rate 

• Average number of moves per game 

• Cumulative reward per episode 

• Training loss (for DQN) and policy gradient variance 

To ensure statistical robustness, evaluations were repeated three times using different random seeds. 
 

V. DATA COLLECTION AND ANALYSIS 

 

The data collected during training and evaluation was both quantitative and temporal in nature. Key metrics included: 
• Win Rate Over Time: Tracked to assess the learning progression and convergence behavior of agents. This 

was plotted against episode count to observe stability and performance trends. 
• Cumulative Rewards: Measured per episode for Policy Gradient agents and averaged over rolling windows. 

These curves helped detect reward plateaus and learning stalls. 
• Q-Value Estimates: For DQN agents, average predicted Q-values per state were tracked to monitor value 

function stability. 
• Training Loss: Mean squared error loss from Q-learning updates provided insights into convergence behavior 

and stability issues. 
• Gradient Variance: Measured for Policy Gradient agents to assess whether updates were becoming more 

stable or volatile as training progressed. 
• Resource Metrics: CPU/GPU utilization, memory consumption, and training duration were logged for each 

experiment to assess computational efficiency. 

http://www.ijarasem.com/


International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM) 

                                        | ISSN: 2395-7852 | www.ijarasem.com | Bimonthly, Peer Reviewed & Referred Journal|        

 | Volume 4, Issue 4, July 2017 | 
 

IJARASEM © 2017                                                          |   An ISO 9001:2008 Certified Journal   |                                            1003 

 

Analysis involved aggregating these metrics and visualizing them through line plots and histograms. Particular 
attention was paid to: 
 

• The rate of improvement in win percentage 

• Volatility in training loss and Q-value divergence 

• Performance differentials between game types 

• Effects of opponent type on policy robustness 

 

All metrics were logged using TensorBoard and exported to CSV files for offline analysis in Python using Pandas and 
Matplotlib. 
 

VI. RESULTS 

 

The experimental results support the hypothesis that DRL agents can learn competitive strategies and outperform rule-

based agents in structured board games. Below are the summarized findings across the three games: 
 

6.1 Connect Four 

• DQN reached 92.5% win rate against random agents and 81.3% against minimax agents. 
• Policy Gradient achieved slightly lower peak win rates (88.7% vs. random, 76.4% vs. minimax) but learned 

more smoothly and consistently. 
• Training time to convergence: ~5 hours on 1 GPU. 

 

6.2 Chess (Simplified Variant) 
• DQN reached 64.2% win rate against the minimax opponent (depth 2), surpassing traditional heuristics. 
• Policy Gradient plateaued at ~58.1%, but produced more diverse strategies. 
• DQN suffered occasional Q-value divergence without target network updates. 

 

6.3 Shogi 
• Due to higher branching factor, both agents took longer to converge. 
• DQN outperformed Policy Gradient in this domain, achieving 61.4% win rate against rule-based agents after 

500k episodes. 
• Experience replay was essential for stability; without it, training stalled early. 

 

Overall Findings: 
• DQN showed stronger raw performance but required more tuning and infrastructure. 
• Policy Gradient offered smoother learning curves and was less prone to divergence but had lower final win 

rates. 
• Both agents improved significantly over random baselines and achieved ~15% better win rates than minimax 

agents across games. 
 

These results confirm the feasibility of using DRL to develop game strategies without handcrafted rules and suggest 
broader applicability to other sequential decision-making problems. 
 

VII. DISCUSSION 

 

The results of our experiments indicate that deep reinforcement learning algorithms—particularly DQN and Policy 
Gradient methods—can effectively learn competitive strategies in discrete, structured environments like board games. 
Several key insights emerged during the analysis that have implications both for game AI and broader applications of 
DRL. 
 

7.1 Performance and Learning Dynamics 

DQN consistently achieved higher win rates across all games compared to Policy Gradient methods, especially in 
environments with deterministic rules and moderate state-action complexity. This advantage is largely attributable to 
DQN’s ability to exploit learned value functions to guide decision-making. However, DQN’s performance gains came 
at the cost of greater instability. Without proper use of experience replay and target networks, Q-value estimates 
diverged, causing erratic policy behavior. 
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In contrast, Policy Gradient methods provided more stable and gradual improvements during training. The stochastic 
nature of policy updates, combined with reward normalization and on-policy learning, resulted in smoother learning 
curves. Although final performance was lower than DQN, the robustness and simplicity of Policy Gradient made it a 
strong candidate in domains where sample efficiency and convergence stability are critical. 
 

7.2 Game-Specific Observations 

The relative success of DRL varied across games. Connect Four, with its smaller and fully observable state space, 
served as an ideal proving ground. Both agents converged quickly and learned near-optimal strategies. In Chess and 
Shogi, the large branching factors and longer episode horizons presented a challenge. Agents required more training 
time and frequently failed to generalize beyond common opening patterns unless given millions of episodes. 
Shogi, in particular, exposed weaknesses in policy generalization. The ability to drop captured pieces created a much 
larger state space, and both agents struggled to develop long-term planning capabilities. These results highlight the need 
for enhancements such as attention mechanisms or curriculum learning in more complex games. 
 

7.3 Limitations 

The study's limitations stem primarily from computational constraints and the choice of simplified environments. Full-
scale versions of Chess and Shogi were not used due to the computational burden of training agents on such large state 
spaces. Additionally, the use of fixed opponents during evaluation may have biased agents toward learning counter-

strategies rather than generalizing. 
 

Another limitation involves the architecture used. Simple feed-forward networks, while effective in Connect Four, may 
be inadequate for capturing the depth of decision-making required in more complex games. More advanced models, 
such as convolutional neural networks (CNNs) for spatial board representations or recurrent neural networks (RNNs) 
for sequential decision history, could further enhance agent performance. 
 

7.4 Broader Implications 

The ability of DRL to learn effective strategies through self-play and feedback-driven optimization has implications 
beyond games. Many real-world domains—including robotics, traffic management, financial portfolio optimization, 
and autonomous vehicles—require agents to make sequential decisions under uncertainty. This study reinforces the 
notion that with sufficient training and well-engineered environments, DRL can serve as a foundation for adaptive, 
goal-directed behavior in such domains. 
 

VIII. CONCLUSION 

 

This paper presented a comprehensive experimental study on the application of deep reinforcement learning to game 
strategy optimization in structured board games. By implementing and evaluating Deep Q-Networks and Policy 
Gradient agents on Connect Four, Chess, and Shogi, we demonstrated that DRL agents can learn to outperform rule-

based opponents using only environment interactions and reward signals. 
 

Our findings support the hypothesis that DRL is a powerful tool for sequential decision-making and strategy 
development. DQN achieved the highest performance but required stabilization techniques and substantial tuning. 
Policy Gradient methods offered smoother convergence and maintained consistent improvement, albeit at a lower 
ceiling of performance. Both agents showed the ability to generalize and improve through repeated interaction, learning 
complex behaviors without explicit rules or human guidance. 
 

The study also revealed several challenges, including sample inefficiency, the need for large training time, and 
instability in deep architectures. Future work should explore hybrid architectures, improved exploration strategies, and 
meta-learning approaches to address these issues. 
 

Ultimately, this research contributes to the growing body of work validating DRL as a practical method for training 
autonomous agents, with applications that extend well beyond games into areas where intelligent sequential decision-

making is essential. 
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